

NovoSPT 3.0.2020.601 Licensed to : Pyramix Engineering

Following correlations are calculated for: N60=13 @ 3.05 m; Corrected SPT N1(60)~16 after Peck and Bazaraa, 1969

Table i :	Input	data	and	assum	ptions.
-----------	-------	------	-----	-------	---------

Table i : Input data and	assumptions.	Table ii : Soil layers from existing ground.							
Input Parameter	Value	Thickness (m)	Unit Weight (kN/m3)	Soil Type	D50 (mm)	OCR			
Footing B (m):	0.6	3	16.5	Clay	0.002	2			
Footing L (m):	0.9	2.6	18.7	Sand	1.03	1			
Footing Df (m):	0.6	1.6	17.5	Silt	0.033	1			
Footing P (kPa):	100	2	21	Gravel	34	1			
Safety Factor FoS	3								
Apply Groundwater Cor	No								
Groundwater Level (m)	-								

Pile Length 3.05

Pile Diameter (m): 0.3

Table iii : In-situ SPT test results.											
Depth (m)	SPT Blow Counts (N)	N60	Cn	С	N1(60)						
0.3	34	26	1.7	0.75	44						
0.61	12	9	1.7	0.75	15						
0.91	18	14	1.7	0.75	24						
1.22	26	20	1.7	0.75	34						
1.52	23	17	1.7	0.75	29						
1.83	25	19	1.7	0.75	32						
2.13	43	32	1.62	0.75	52						
2.44	22	16	1.49	0.75	24						
2.74	21	16	1.38	0.75	22						
3.05	17	13	1.29	0.75	17						
3.35	18	14	1.2	0.75	17						
3.66	20	15	1.12	0.76	17						
3.96	19	15	1.05	0.79	16						
4.27	25	20	1	0.82	20						
4.57	23	19	0.98	0.84	19						
4.88	24	20	0.97	0.85	19						
5.18	25	22	0.95	0.87	21						
5.49	22	19	0.94	0.88	18						
5.79	24	21	0.93	0.89	20						
6.1	24	22	0.92	0.9	20						
6.4	26	24	0.9	0.91	22						
6.71	28	26	0.89	0.92	23						
7.01	18	17	0.88	0.93	15						
7.32	20	19	0.87	0.93	17						
7.62	24	23	0.86	0.94	20						
7.92	16	15	0.85	0.94	13						

0.5

1

■■**♦**■ Cn

Schematic Soil Profile

.: List of SPT Correlations For Overburden Correction Factor (Cn) :.

Overburden Correction Factor (Cn)		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Canadian Foundation Engineering Manual, 2	006.22	*				4th Edition	17	$C_N = 0.77 Log \frac{1920}{\sigma'_n}$
Gibbs and Holtz, 1957	1.7	*				equation by Teng, 1962		$C_N = \frac{50}{\left(10 + \sigma'_{g}\right)}$
Liao and Whitman, 1986	1.39	*					51	$C_N = \sqrt{\frac{98.07}{\sigma'_n}}$
Peck and Bazaraa, 1969	1.29	*						$C_N = \underbrace{\frac{4}{1 + 2\sigma_n} - for\sigma'_v \leqslant 1500 psf}_{0.25 \pm 0.5\sigma_n} + \underbrace{\frac{4}{3.25 \pm 0.5\sigma_n} - for\sigma'_v > 1500 psf}_{0.25 \pm 0.5\sigma_n}$
Peck, Hanson and Thornburn, 1974	1.22	*					51	$C_N = 0.77 \times Log \frac{20}{\sigma'}$
Samson et al., 1986	1.38	*						$C_N = \sqrt{\frac{95.76}{\sigma'_p}}$
Seed, 1976	1.36	*					51	$C_N = 1-1.25 \times Log \frac{\sigma'v}{08.07}$
Skempton, 1986	1.32	*					51	$function of Dr = 12.4 \times \sqrt{N60}$
Tokimatsu and Yoshimi, 1983	1.4	*						$C_N = \frac{1.7}{0.7 + \frac{\sigma'}{\pi}}$

.: List of SPT Correlations For Other Correction Factors :.

Other Correction Factors		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Skempton, 1986	1	*				Borehole Diameter Factor, Cb	52	$C_B = 1^{<150mm} \leftrightarrow 1.05^{150mm} \leftrightarrow 1.15^{200mm}$
Skempton, 1986	1	*				Sampling Method Factor, Cs	52	$C_{S} = 1^{Stand} \leftrightarrow 1.2^{NoLiner}$
Skempton, 1986	0.75	*				Rod Length Factor, Cr	52	$C_R = \frac{1}{\left(0.39 + \frac{4.3166}{2^2}\right)}$
Skempton, 1986	1	*				Energy Ratio Factor, Ce	52	$C_{E} = \frac{E}{60}$

.: List of SPT Correlations For Consistency :.

Consistency	Clay Silt	Sand Grvl	Comments	Ref#	Equation
AASHTO, 1988	Medium Dense (Compact)	*	for coarse-grained soils	55	see reference #55 for details
Terzaghi and Peck, 1948	Medium Dense (Compact)	*	for coarse-grained soils	3	see reference #3 for details

.: List of SPT Correlations For Young's Modulus (Es) :.

Young's Modulus (Es) MPa	Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
AASHTO, 1996	11.5		*		Clean fine to medium sands and slightly silty sands	55	$E_s = \frac{700 \times N_{1.60}}{1000}$
AASHTO, 1996	16.4		*		Coarse sands and sands with little gravel	55	$E_s = \frac{1000 \times N_{1_{60}}}{1000}$
Bowles, 1996	76.5		*		Sand (normally consolidated)	25	$E_{s} = \frac{6000 \times N_{60}}{1000}$
Bowles, 1996	47.1		*		Sand (normally consolidated)	25	$E_{s} = \frac{18500 \times Log N_{60}}{1000}$
Bowles, 1996	6.9		*		Sand (saturated)	25	$E_{s} = \frac{250 \times (N_{60} + 15)}{1000}$
Bowles, 1996	35.1		*		Sands (all normally consolidated): average value	25	$E_{s} = \frac{2750 \times N_{00}}{1000}$
Bowles, 1996	53.4		*		Sand (over consolidated) OCR=1	25	$E_{s} = \frac{(40000 + 1050 \times N60) \times \sqrt{OCR}}{1000}$
Bowles, 1996	22.5		*		Gravelly sand	25	$E_{s} = \frac{1200 \times (N60 + 6)}{1000}$
Bowles, 1996 and Denver, 1982	25		*		Sand (normally consolidated)	25	$E_s = \frac{7000 \times \sqrt{N60}}{1000}$
Chaplin, 1963	11		*		Sand	74	$E_{\rm s} = (44 \times N60)^{0.75} \times \frac{95.76}{1000}$
Clayton et al., 1980	~ 44.6 to 510		*		Sand	74	$E_{s} = (3.5 \leftrightarrow 40) \times N_{60}$
D'Appolonia et al., 1970	38.4		*		Sand (normally consolidated)	41	$E_{s} = (220 + 11 \times N_{1_{60}}) \times \frac{100}{1000}$
D'Appolonia et al., 1970	24		*		Sand (normally consolidated)	66	$E_{s} = (194 + 8 \times N_{60}) \times (1 - 0.35^{2}) \times \frac{95.76}{1000}$
D'Appolonia et al., 1970	45		*		Sand (over consolidated)	66	$E_{s} = (420 + 10 \times N6o_{ave}) \times (1 - 0.35^{2}) \times \frac{95.76}{1000}$
Denver, 1982	25		*		Sand	74	$E_{s} = 7 \times \sqrt{N60}$
Farrent, 1963	8.1		*		Based on Terzaghi & Peck loading curves	74	$E_{\pm} = \frac{7.5 \times_{\tilde{g}}^8 \times N60 \times 95.76}{1000}$
Kulhawy and Mayne, 1990	6.4		*		Sands with fines		$E_{s} = \frac{5 \times N_{00} \times 100}{1000}$
Kulhawy and Mayne, 1990	12.8		*		Clean sands (normally consolidated)		$E_{s} = \frac{10 \times N_{60} \times 100}{1000}$
Kulhawy and Mayne, 1990	19.1		*		Clean sands (over consolidated)		$E_{s} = \frac{15 \times N60 \times 100}{1000}$
Mezenbach, 1961	9.4		*		Fine-grained sand (above water level)	25	$E_{s} = \frac{100 \times (52 + 3.3 \times N_{00})}{1000}$
Mezenbach, 1961	13.3		*		Fine-grained sand (below water level)	25	$E_{s} = \frac{100 \times (71 + 4.9 \times N_{00})}{1000}$
Mezenbach, 1961	9.6		*		Sand (medium)	25	$E_{s} = \frac{100 \times (39 + 4.5 \times N_{00})}{1000}$
Mezenbach, 1961	17.2		*		Coarse-grained sand	25	$E_{s} = \frac{100 \times (38 + 10.5 \times N_{60})}{1000}$
Mezenbach, 1961	19.3		*		Sand and gravel	25	$E_{s} = \frac{100 \times (43 + 11.8 \times N_{60})}{1000}$
Mezenbach, 1961	9.2		*		Silty sand	25	$E_s = \frac{100 \times (24 + 5.3 \times N_{60})}{1000}$
Papadopoulos, 1992	17.7		*		Sands	25	$E_{s} = \frac{(75 + 8 \times N_{00}) \times 100}{1000}$
Schultze and Muhs, 1967	45		*		Sand	41	$E_{s} = \left(0.00231839 \times N_{1_{60}}^{3} \cdot 0.489236 \times N_{1_{60}}^{2} + 34.619 \times N_{1_{60}} + 34.619 \times N_{1_{60}}^{3} + 34.6$
Skempton, 1986	20.7 ~	~	~	~			$E_{s} = 4.8 + 1.25 \times N60$
Stroud, 1988	~ 6.4 to 25.5 ~	~	~	~	Weak rocks	47	$E_{s} = \frac{(500 \leftrightarrow 2000) \times N_{60}}{1000}$
Tan et al., 1991	13.9		*		Sand (normally consolidated)		$E_{s} = \frac{500 \times (N60 + 15)}{1000}$
Tan et al., 1991	11.2		*		Gravelly sand		$E_{\perp} = \frac{600 \times (N60 + 6)}{1000} for N \leqslant 15 \\ \leftrightarrow \frac{600 \times (N60 + 6) - 2000}{1000} for N > 15$
Tan et al., 1991	8.9		*		Clayey sand		$E_s = \frac{320 \times (N60 + 15)}{1000}$
Trofimenkov, 1974	~ 37.9 to 54.2		*		Sand (USSR practice)	74	$E_s = (350 \leftrightarrow 500) (Log N_{60}) \times \frac{98.067}{1000}$
Webb, 1969	13.3		*		Sand, below water table	74	$E_{s} = \frac{5 \times (N60 + 15) \times 95.76}{1000}$
Webb, 1969	5.7		*		Clayey Sand, below water table	74	$E_{s} = \frac{3.33 \times (N60 + 5) \times 95.76}{1000}$
Webb, 1969	9.5 *				Average profile, below water table	74	$E_{s} = \frac{4 \times (N60 + 12) \times 95.76}{1000}$
							5 1000

NovoSPT 3.0.2020.601; Licensed to: Pyramix Engineering printed on 2020-05-20 @ 9:18:9 correlations are calculated for: N60=13 @ 3.05 m; Corrected SPT N1(60)~16 after Peck and Bazaraa, 1969

.: List of SPT Correlations For Friction Angle :.

Friction Angle deg		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Ayuthaya	35.2	~	~	~	~		24	$\Phi = \sqrt{12 \times N60} + 22.8$
Ayuthaya	36.4	~	~	~	~		24	$\Phi = \sqrt{12 \times N_{1_{60}}} + 22.4$
Chonburi	34.4	~	~	~	~		24	$\Phi = \sqrt{12 \times N60} + 22$
Chonburi	37.4	~	~	~	~		24	$\Phi = \sqrt{12 \times N_{1_{60}}} + 23.4$
Duncan, 2004	41.2			*		Sand, Cu<6	45	$\Phi = 34 + \frac{10 \times Dr}{100} \cdot \left(3 + \frac{2 \times Dr}{100}\right) \times Log \frac{\sigma_v}{100}$
Duncan, 2004	45			*		Sand, Cu>6	45	$\Phi = 39 + \frac{10 \times Dr}{100} \cdot \left(3 + \frac{2 \times Dr}{100}\right) \times Log \frac{\sigma'_{s}}{100}$
Dunham, 1954	37.4			*		Angular and well-graded soils	4	$\Phi = \sqrt{12 \times N60} + 25$
Dunham, 1954	32.4			*		Round and well-graded OR Angular and uniform-grade	ed4soils	$\Phi = \sqrt{12 \times N60} + 20$
Dunham, 1954	27.4			*		Round and uniform-garded soils	4	$\Phi = \sqrt{12 \times N60} + 15$
Hatanaka and Uchida, 1996	36.5	~	~	~	~		2	$\Phi = 3.5 \times \sqrt{N_{1_{60}}} + 22.3$
Hatanaka and Uchida, 1996	38.1	~	~	~	~		30,51	$\Phi = \sqrt{20 \times N_{1_{60}}} + 20$
Hatanaka and Uchida, 1996	35.1	~	~	~	~		25	$\Phi = \sqrt{20 \times N_{1_{60}}} + 17$
Hettiarachchi and Brown, 2009	29.5			*		for loose sand	63	$\Phi = 0.333 ext{ sm}^{-1} \left(\frac{2.2 \times W_{0}}{\sqrt{2}} - 0.08 \right) ext{sm}^{130}$
Hettiarachchi and Brown, 2009	32.3			*		for dense sand	63	$\Phi = 0.365 \kappa (n^2 \left(\frac{2.2 \times N_{22}}{0.5 \pi} - 0.68 \times 0.25\right)^{1300}_{PT}$
JRA, 1990	28.8	~	~	~	~	for N60>5 , Fi<=45	4	$\Phi = \sqrt{15 \times N_{60}} + 15$
Kampengsen	35.7	~	~	~	~		24	$\Phi = \sqrt{12 \times N_{60}} + 23.3$
Kampengsen	40	~	~	~	~		24	$\Phi = \sqrt{12 \times N_{1_{60}}} + 26$
Meyerhof, 1959	35.6	~	~	~	~	Dr from Yoshida, 1988		$\Phi = 28 + 0.15 \times Dr \leftrightarrow Dr = 25 \times \sigma'_n^{-0.12} \times N60^{-0.46}$
Moh, Chin, Lin and Woo, 1989	33.1			*		granular soils in Taipei	33	$\Phi = 28 + 1.3 \times \sqrt{0.77 \times N_{00} \times Log \frac{195 \times 9.807}{\sigma'_{u}}}$
Ohsaki et al., 1959 and Kishida, 1967	31	~	~	~	~		4	$\Phi = \sqrt{20 \times N60} + 15$
Peck et al., 1953	29	~	~	~	~		4	$\Phi = 27 + \sqrt{0.3 \times N_{60}}$
Peck, Hanson and Thornburn, 1974	31	~	~	~	~	is not recommended for shallow depths (less than 1 to	22mpEntres)	$\Phi = 53.881 - 27.6034 \times e^{-0.0147 \times N_{1_{60}}}$
Schmertmann, 1975	39.5	~	~	~	~	also recommended by Kulhawy and Mayne, 1990	51	$\Phi = \tan^{-1} \left(\frac{N60}{\left(\frac{20.3 \times \sigma^2}{1122 + -0.000} \right)^{0.31}} \right) \times \frac{180}{TT}$
Shioi and Fukui, 1954	24.9	~	~	~	~	in general	1	$\Phi = 20 + 0.45 \times N_7$ o
Shioi and Fukui, 1954	29	~	~	~	~	for roads and bridges	1	$\Phi = \sqrt{18 \times N_{70}} + 15$
Shioi and Fukui, 1954	30.9	~	~	~	~	for buildings	1	$\Phi = 27 + 0.36 \times N_7$ o
Terzaghi, Peck and Mesri, 1996	34.2			*		Fine-grained sands	23,27	$\Phi = 30 + \frac{N_{60}}{3}$
Terzaghi, Peck and Mesri, 1996	31.2			*		Coarse-grained sands	23,27	$\Phi = 28 + \frac{N6o}{4}$
Wolff, 1989	31.9	~	~	~	~	an approximation based on Peck et al., 1974	30	$\Phi = 27.1 + 0.3 \times N_{1_{60}} - 0.00054 \times N_{1_{60}}^{2}$
Wolff, 1989	30.8	~	~	~	~	an approximation based on Peck et al., 1974	63	$\Phi = 27.1 + 0.3 \times N_{60} - 0.00054 \times N_{60}^2$

.: List of SPT Correlations For Relative Density (Dr) of Sand :.

Relative Density (Dr) of Sand %		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Cubrinovski and Ishihara, 1999	64.9			*		All sands	42	$D_r(\%) = 100 \sqrt{\frac{N_1(60)}{20}}$
Cubrinovski and Ishihara, 1999	56.7			*		Clean sands	42	$D_r(\%) = 100 \sqrt{\frac{N_1(60)}{-51}}$
Cubrinovski and Ishihara, 1999	79.5			*		Silty sands	42	$D_r(\%) = 100 \sqrt{\frac{N_1(60)}{-26}}$
Cubrinovski and Ishihara, 1999	58.2			*		function of D50	51	$D_{j}(\mathbb{X}) = 109 \sqrt{\frac{Mex}{2} \left(\frac{2\beta_{1} + 0\beta_{2}}{2\beta_{2}}\right)^{1/2}} \frac{1}{6\kappa_{1}^{20}}$
Gibbs and Holtz, 1957	65.6			*			53	$D_{\gamma}(\%) = 100 \sqrt{\frac{N0\alpha}{\left(\frac{12\pi\sigma_{\gamma}}{17.88} - 17\right)}}$
Idriss and Boulanger, 2003	59.7			*			19	$D_r(\%) = 100 \sqrt{\frac{N_1(60)}{-16}}$
Jamiolkowski, 1988 & Skempton, 1986	48.1			*		Fine sands	54	$D_r(\%) = 13.48\sqrt{N60}$
Jamiolkowski, 1988 & Skempton, 1986	44.3			*		Coarse sands	54	$D_r(\%) = 12.4\sqrt{N60}$
Meyerhof, 1957	65.9			*				$D_{\gamma}(\%) = 20.41 \sqrt{\frac{N lin}{(\frac{\pi}{30} + 0.708)}}$
Yoshida et al., 1988	50.4			*		with Co=25, C1=0.12, C2=0.46	1	$D_r(\%) = 25 \times \sigma_v^{-0.12} \times N60^{-0.46}$

Undrained Shear Strength (Su) of Clay/	Silt kPa	Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Sowers, 1979	~ 31.88 to 5	8.44	*			Clayey sands (SC) and Silts (ML)		$S_{\mu} = 150 \frac{N_{60}}{60} \leftrightarrow 275 \frac{N_{60}}{60}$

.: List of SPT Correlations For Shear Wave Velocity (Vs) :.

Shear Wave Velocity (Vs) m/s		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Akin, Kramer and Topal, 2011	126	*				for all alluvial soils	71	$Vs = 59.44 \times N60^{0.109} \times Z^{0.426}$
Akin, Kramer and Topal, 2011	103			*		for all alluvial sands	71	$Vs = 38.55 \times N60^{0.176} \times Z^{0.481}$
Akin, Kramer and Topal, 2011	200	*				for all Pliocene soils	71	$Vs = 121.75 \times N60^{0.101} \times Z^{0.216}$
Akin, Kramer and Topal, 2011	158			*		for all Pliocene sands	71	$Vs = 52.04 \times N60^{0.359} \times Z^{0.177}$
Anbazhagan and Sitharam, 2008	239	~	~	~	~	based on 162 data points in Bangalore	43,50	$Vs = 78 imes N_1 (60)^{0.4}$
Andrés Alfaro, 2007	291	~	~	~	~	function of N60	49	$Vs = 99.783 \times N_1(60)^{0.383}$
Andrés Alfaro, 2007	291	~	~	~	~	function of N60 and depth	49	$Vs = 91.44 \times Z^{0.291} \times N_1(60)^{0.298}$
Athanasopoulos, 1995	295	*				for all soils	57	$Vs = 107.6 \times N_1(60)^{0.36}$
Baziar, Fallah, Razeghi and Khorasani, 1998	328	*				for all soils in Iran (function of depth)	58	$Vs = 134 \times N_1(60)^{0.2} \times Z^{0.3}$
Fujiwara, 1972	236	*				for all soils	57	$Vs = 92.1 \times N_1(60)^{0.337}$
Hasancebi and Ulusay, 2007	214	*				for all soils	57	$Vs = 90 \times N_1(60)^{0.309}$
Hasancebi and Ulusay, 2007	222			*		for sands	57	$Vs = 90.82 \times N_1(60)^{0.319}$
Imai and Tonouchi, 1982	208	*				for all soils	57,69	$Vs = 97 \times N67^{0.314}$
Imai and Yoshimura, 1970	176	*				for all soils	57,49	$Vs = 76 \times N60^{-0.33}$
Imai and Yoshimura, 1975	213	~	~	~	~	from 192 samples	31	$Vs = 92.1 \times N60^{0.329}$
Imai et al., 1975	214	*				for all soils	57	$Vs = 89.9 \times N60^{0.341}$
Imai, 1977	215	*				for Quaternary and Pleistocene alluvium	57,69	$Vs = 91 \times N60^{0.337}$
Imai, 1977	187			*		for sands	57	$Vs = 80.6 \times N60^{0.331}$
lyisan	192	*				for all soils	13,57	$Vs = 51.5 \times N60^{0.516}$
Jafari et al., 1997	191	*				for all soils	57,35	$Vs=22 \times N60^{0.85}$
Jinan, 1987	195	*				for soft Holocene deposits	57,69	$Vs = 116.1 \times (N60 + 0.3185)^{0.202}$
JRA, 1980	187			*		for sands	40	$Vs = 80 \times N60^{0.3333}$
Kanai et al., 1966	88	*				for all soils	57	$Vs=19 \times N60^{0.6}$
Kiku et al., 2001	144	*				for all soils	57,69	$Vs = 63.8 \times N_1 (60)^{0.292}$
Lee, 1990	200			*		for sands	57	$Vs = 57.4 \times N60^{0.49}$
Maheswari, Boominathan and Dodagoudar, 2	20 28 6	*				for all soils	73	$Vs = 95.64 \times N60^{0.301}$
Naresh Bellana, 2009	223	*				for all soils	70	$Vs = 126.395 \times N60^{0.223}$
Naresh Bellana, 2009	215			*		for sands	70	$Vs = 124.051 \times N60^{0.216}$
National Center for Research on Earthquake	En1g35(NCREE)	~	~	~	~	200 boreholes in Taiwan, function of Z and N	56	$Vs = 139.1 + 4.09 \times Z + 2.0415 \times N_1$ (60)
Ohba and Toriuma, 1970	185	~	~	~	~	for all soils	49,57,70	$Vs = 84 \times N60^{0.31}$
Ohsaki and Iwazaki, 1973	195			*		for coarse-grained soils		$Vs = 81.4 \times N60^{0.39}$
Ohsaki and Iwazaki, 1973	220	*				for all soils	57	$Vs = 59 \times N60^{0.47}$
Ohta and Goto, 1978	88			*		for Holocene sands	34	$Vs = 53.5 \times N60^{0.17} \times Z^{0.193} \times 1 \times 1.07$
Ohta and Goto, 1978	95			*		for Holocene sands and gravels	34	$Vs = 53.5 \times N60^{0.17} \times Z^{0.193} \times 1 \times 1.15$
Ohta and Goto, 1978	115			*		for Pleistocene sands	34	$Vs = 53.5 \times N60^{0.17} \times Z^{0.193} \times 1.3 \times 1.07$
Ohta and Goto, 1978	123			*		for Pleistocene sands and gravels	34	$Vs = 53.5 \times N60^{0.17} \times Z^{0.193} \times 1.3 \times 1.15$

NovoSPT 3.0.2020.601; Licensed to: Pyramix Engineering printed on 2020-05-20 @ 9:18:9 correlations are calculated for: N60=13 @ 3.05 m; Corrected SPT N1(60)~16 after Peck and Bazaraa, 1969

Shear Wave Velocity (Vs) m/s		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Ohta et al., 1972	218			*		for sands	57	$Vs = 87.2 \times N60^{0.36}$
Okamoto et al., 1989	268			*		for Pleistocene sand	49,57	$Vs = 125 \times N60^{0.3}$
Pitilakis, 1999	228		*			for alluvium material	69	$Vs = 145 \times N60^{0.178}$
Schmertmann, 1978	191			*		for sands	57	$Vs = 15 \times N60$
Seed and Idriss, 1981	219	*				for all soils	57	$Vs = 61.4 \times N60^{0.5}$
Seed et al., 1983	200			*		for sands		$Vs = 56 \times N60^{0.5}$
Shibata, 1970	125			*		for sands	57,70	$Vs = 31.7 \times N60^{0.54}$
Sisman, 1995	137	*				for all soils	57,69	$Vs=32.8 \times N_1(60)^{0.51}$
Sykora and Stokoe, 1983	210			*		for sands	57	$Vs = 100.5 \times N60^{-0.29}$
Tamura and Yamazaki, 2002	218	~	~	~	~	function of depth		$Vs = 105.8 \times N_1(60)^{0.187} \times Z^{0.179}$
Tomio Inazaki, 2006	240	~	~	~	~	Public Works Research Institute of Japan	36	$V_{s} = \left(\frac{N_{60}}{0.0000016}\right)^{0.3448}$
Unal Dikmen (Ankara University), 2008	173	*				for all soils	57	$V_s = 58 \times N_1(60)^{0.39}$
Unal Dikmen (Ankara University), 2008	184			*		for sands	57	$V_s = 73 \times N_1(60)^{0.33}$
Wair and DeJong, PEER 2012/08	152	*				for all soils	76	$V_s = 30 \times N_{60}^{0.215} \times \sigma_u^{0.275}$
Wair and DeJong, PEER 2012/08	133			*		for sands	76	$Vs=30 \times N60^{0.23} \times \sigma_u^{0.23}$
Yokota et al., 1991	241	*				for all soils		$V_{s}=121 \times N_{60}^{0.27}$

.: List of SPT Correlations For Shear Wave Velocity (Vs) $:. \hdots \ continued$

.: List of SPT Correlations For Shear Modulus (Gmax) :.

Shear Modulus (Gmax) MPa		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Anbazhagan and Sitharam, 2007	93	~	~	~	~	data gathered from Bangalore	50	$Gmax(kPa) = 13860 \times N_1(60)^{0.68}$
Anbazhagan, Parihar and Tashmi, 2012	120			*		Sandy soils	75	$Gmax(kPa) = 15090 \times Ni(60)^{0.74}$
Anbazhagan, Sitharam and Diryac, 2007	79	~	~	~	~	data gathered from India	37	$Gmax(kPa) = 11800 \times N_1(60)^{0.68}$
Hara et al., 1974	85			*		Alluvial, diluvial and tertiary deposits	75	$Gmax(kPa) = 15490 \times N60^{0.668}$
Imai and Tonouchi, 1982	80	*				for all soils	75	$Gmax(kPa) = 14120 \times N60^{0.68}$
Imai and Tonouchi, 1982	58			*		Alluvial sand	75	$Gmax(kPa) = 12260 \times N60^{0.611}$
Imai and Tonouchi, 1982	87			*		Diluvial Sand	75	$Gmax(kPa) = 17360 \times N60^{0.631}$
Imai and Yoshimura, 1970	71	~	~	~	~	Mixed soil type	75	$Gmax(kPa) = 9810 \times N60^{0.78}$
Kramer, 1996	88			*		Sandy soils	75	$Gmax(kPa) = 15560 \times N60^{-0.68}$
Ohba and Toriumi, 1970	58	*		*		Alluvial sand and clay	75	$Gmax(kPa) = 11960 \times N60^{0.62}$
Ohsaki and Iwasaki, 1973	87	*				for all soils	75	$Gmax(kPa) = 11940 \times N60^{0.78}$
Ohsaki and Iwasaki, 1973	90	*				for all soils	75	$Gmax(kPa) = 11770 \times N60^{0.8}$
Ohsaki and Iwasaki, 1973	70			*		Sandy soils	75	$Gmax(kPa) = 6370 \times N60^{0.94}$
Ohsaki and Iwasaki, 1973	80	~	~	~	~	Intermediate soils	75	$Gmax(kPa) = 11590 \times N60^{-0.76}$
Randolph, 1981	13	~	~	~	~	conservative results (for horizontally loaded)	44	$Gmax(kPa) = 1000 \times N60$
Seed et al., 1983	79	~	~	~	~		75	$Gmax(kPa) = 6220 \times N60$
Seed et al., 1986	79	~	~	~	~	using Japanese data (function of S'v)		$Gmax(kPa) = (20000 \times 0.04788) \times \sqrt[3]{N_1(60)} \times \sqrt{(20.88546\sigma_v)}$
Seed et al., 1986	64	~	~	~	~	(function of S'v)	46	$Gmax(kPa) = (35000 \times 0.04788) \times \sqrt[3]{N60} \times (20.88546 \sigma_v)^{0.4}$
Seed, Idriss and Arango, 1983	83	~	~	~	~			$Gmax(kPa) = 6500 \times N60^{-1}$
Wroth et al., 1979	92	~	~	~	~	based on Ohsaki and Iwasaki, 1973	44	$Gmax(kPa) = 100 \times 120 \times N60^{0.8}$

.: List of SPT Correlations For Liquefaction (CRR) :.

Liquefaction (CRR)		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Chinese Code	0.28			*		based on 0.833*N1(60)		$CRR = f(N_{1_{60}})$
Idriss and Boulanger, 2004 (UC Davis)	0.17			*			19	$CRR \sim \frac{N_16_0}{14.1} + \left(\frac{N_16_0}{126}\right)^2 \cdot \left(\frac{N_16_0}{23.6}\right)^3 + \left(\frac{N_16_0}{25.4}\right)^4 - 2.8$
Kokusho	0.28			*		based on 0.833*N1(60)		$CRR = f(N_{1_{60}})$
NCEER 1997 Workshop Report	0.17			*		for clean sand	53	$CRR = \frac{1}{\left(31 - N_{1_{20}}\right)} + \frac{N_{1_{20}}}{325} + \frac{50}{\left(10 \times N_{1_{20}} + 15\right)} \frac{1}{1200}$
Seed	0.3			*		based on 0.833*N1(60)		$CRR = f(N_{1_{60}})$
Shibata	0.29			*		based on 0.833*N1(60)		$CRR = f(N_{1_{60}})$
Tokimatsu	0.28			*		based on 0.833*N1(60)		$CRR = f(N_{1_{60}})$

.: List of SPT Correlations For Becker Hammer Test (BPT) :.

Becker Hammer Test (BPT)		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Alex Sy and Campanella, 1994	31			*		friction $Rs = 0 kN$	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	16			*		friction Rs = 45 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	9			*		friction $Rs = 90 \text{ kN}$	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	4			*		friction Rs = 135 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	3			*		friction Rs = 180 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	2			*		friction Rs = 225 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	1			*		friction Rs = 270 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	1			*		friction Rs = 315 kN	15,18	see reference #15, #18 for details
Alex Sy and Campanella, 1994	1			*		friction Rs = 360 kN	15,18	see reference #15, #18 for details
Harder and Seed, 1986	13			*		does not consider friction of casing	15	see reference #15, #18 for details

.: List of SPT Correlations For Pressure-meter Test :.

Pressure-meter Test MPa		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Bozbey and Togrol, 2009	9.44			*		Modulus (Epmt) in sand in Turkey	60	$E_{pmt} = 1.33 \times N60^{0.77}$
Bozbey and Togrol, 2009	1.21			*		Limit pressure (PI) in sand in Turkey	60	$P_L = 0.33 \times N_{60}^{0.51}$
Ohya et al., 1982	4.87			*		Modulus (Epmt) in sand	64	$E_{pmt} = 0.908 \times N60^{0.66}$
Y.C. Chiang and Y.M. Ho, 1980	6.91			*		Modulus (Epmt) in weathered granitic soils in Hong Ke	on ģ 1	$E_{pmt} = 0.6 \times N60^{0.96}$
Y.C. Chiang and Y.M. Ho, 1980	1.1			*		Limit pressure (PI) in weathered granitic soils in Hong	Konîng	$P_L = 0.17 \times N_{60}^{0.734}$

Bearing Capacity of Deep Foundations	(Piles) kPa	Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Detta et al., 1980	~ 2136.6 to	7122.1		*		Ult. qp in calcareous sands	39	$q_{mu} = \frac{95.76 \times 140}{80} \times N_{60} \leftrightarrow \frac{95.76 \times 140}{25} \times N_{60}$
GEO, 1996 and Yau 2000	13.3	~	~	~	~	Ult. fs for bored piles in saprolites	10	pile_1
Hassan and O'Neill, 1994	191.5	~	~	~	~	Ult. fs for drilled piles (modified beta method, function	nøn≴6depth)	$f_{su} = 95.76\beta \sigma_v \leftrightarrow 0.25 \leqslant \beta - \frac{N60}{15} \left(1.5 \cdot 0.135 \times \sqrt{\frac{L}{0.3048}} \right) \leqslant 1.2$
Meyerhof, 1976	17.6	~	~	~	~	Ult. fs for small displacement piles (bored)	28	$f_{su} = N60_{Ave}$
Meyerhof, 1976	35.2	~	~	~	~	Ult. fs for large displacement piles (driven)	28	$f_{su} = 2N60_{Ave}$
Meyerhof, 1976	1969.9	~	~	~	~	Ult. qp for small displacement piles (bored) with uppe	r 1218nit cut-c	$f_{q_{pu}} = 12 \times N_{1} \frac{L}{(60)D} \leftrightarrow for \frac{L}{D} \leq 10$
Meyerhof, 1976	6566.4	~	~	~	~	Ult. qp for large displacement piles (driven) with upper	r2183mitcut-o	$Dlq_{pu} = 40 \times N1 \frac{L}{(60)D} \leftrightarrow for \ \frac{L}{D} \leq 10$
Quiros and Reese, 1977	43.8	~	~	~	~	Ult. fs for drilled piles	46	$f_{su} = 2.49 \times N_{60} \approx 191.5$
Reese and O'Neill, 1988	191.5	~	~	~	~	Ult. fs for drilled piles (beta method, function of depth)46	$f_{su} = 95.76\beta\sigma_v \leftrightarrow 0.25 \leqslant \beta = 1.5 - 0.135 \times \sqrt{\frac{L}{0.3048}} \leqslant 1.2$
Reese and O'Neill, 1988	765	~	~	~	~	Ult. qp with upper limit of 4300 KPa in drilled shafts	46	$q_{pu} = 60 \times N_{60} \ge 4300$
Reese and Wright, 1977	35.9	~	~	~	~	Ult. fs for drilled piles	46	$f_{su} = 95.76 \frac{N_{60}}{34} \leftrightarrow N_{60} \leqslant 53$ $95.76 \frac{(N_{60}-53)}{450} + 1.6 \leftrightarrow N_{60} > 5$
Reese and Wright, 1977	814	~	~	~	~	Ult. qp for drilled piles	46	$q_{pu} = 95.76 \frac{2}{3} \times N60 \le 95.76 \times 40$
Yves Robert, 1997	24.2			*		Ult. fs in granular soil	28	$\dot{f}_{su} = 1.9N60$
Yves Robert, 1997	1887.8			*		Ult. qp for bored piles in granular soil	28	$q_{pu} = 115 \times N_{1_{60}}$
Yves Robert, 1997	3119			*		Ult. qp for driven piles in granular soil	28	$q_{pu} = 190 \times N_{1_{60}}$

.: List of SPT Correlations For Bearing Capacity of Deep Foundations (Piles) :.

.: List of SPT Correlations For Bearing Capacity of Shallow Footings (qa) :.

Bearing Capacity of Shallow Footings (c	ja) kPa	Clay	Silt	Sand	Grvl	Comments	Ref#	Equation	
Bowles (after Meyerhof), 1976	364.65	~	~	~	~	for 25mm settlement	1		
Burland and Burbidge, 1985	838.86			*		T=2.23, for 25mm settlement	2		
Parry, 1977	-			*		in cohesionless soils (valid for Df <b) 25mm="" for="" settlement<="" td=""></b)>			
Peck et al., 1974	104.41			*		in cohesionless soils (valid for B<1 m)			
Terzaghi	757.94			*		Ng from Brinch and Hansen 1970, Nq from Bowles 199	96, Phi fron	n Hatanaka and Uchida, 1996	

.: List of SPT Correlations For Settlement of Footings on Sand (S) :.

Settlement of Footings on Sand (S)) cm	Clay	Silt	Sand	Grvl	Comments	Ref#	Equa
Alpan, 1964	1.04	~	~	~	~		6	see
Anagnostropoulos et al., 1991	0.44	~	~	~	~	database of 150 cases	6	see
Burland and Burbidge, 1985	0.35			*		for normally consolidated sands	6	see
Burland and Burbidge, 1985	0.04			*		for over consolidated sands	6	see
Duncan and Buchignani, 1976	1.44	~	~	~	~	modified from Meyerhof 1965, for 1 year time effect		see
modified Meyerhof (based on Terzaghi a	ind Peck)			*		for sands, B>1.2 m	6	see
modified Meyerhof, 1965	0.61			*		revised method after Meyerhof, 1956	6	see
Peck and Bazaraa, 1969	0.26	~	~	~	~		6	see
Peck, Hanson and Thornburn, 1974	-	~	~	~	~	valid for B>0.9 m	6	see
Terzaghi and Peck, 1967	0.96	~	~	~	~			see

Equation see reference #6 for details see reference #6 for details

Other Soil Parameters		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
{source}	23	~	~	~	~	DCPI (mm/blow)		$DCPI = 116.436 \cdot 14.941 \times N60 + 0.86 \times N60^{2} \cdot 0.02$
Ajayi and Balogun, 1988	4.66	~	~	~	~	CPT tip resistance (qc MPa), data from Nigeria (above	g ģrō undwat	te $p_c = 0.49 \times N60 - 1.59$
Ajayi and Balogun, 1988	7.68	~	~	~	~	CPT tip resistance (qc MPa), data from Nigeria (below	g 65 undwat	$teq_c = 0.19 \times N_{60} + 5.26$
Chang, 1988	2.93	~	~	~	~	CPT tip resistance (qc MPa), data from Singapore in J	ur 6 āg forma	$ation=0.23 \times N60$
Chang, 1988	2.3	~	~	~	~	CPT tip resistance (qc MPa), data from Singapore in E	Bu k i5 format	$tioq_c = 0.18 \times N60$
D. Roy, J. Hughes and R.G. Campanella	8.8	~	~	~	~	normalized dilation angle (deg)	62	$\psi = 10^{0.25} \times N \iota_{60}^{0.57}$
FHWA, 2002	87.9	~	~	~	~	initial shear modulus (Go), in MPa	55	$G_0 = 15.56 \times N60^{-0.68}$
J. Fred Triggs and Paul D. Simpson, 1990	15	*				Wildcat Dynamic Penetrometer blow counts /10cm	26	$N = 3.615 \frac{N_{60}}{\alpha} \leftrightarrow 1.89 \leqslant \alpha \leqslant 4.44$
Kulhawy and Mayne, 1990	17.3			*		Saturated unit weight for Sands, in kN/m3	46	$\gamma = 15.7 \leftrightarrow 19.6 \ function of N_{60}$
Meyerhof, 1965	5.1	~	~	~	~	CPT tip resistance (qc MPa)		$q_c = 0.4 \times N_{60}$
Muayed Ismail, 2008	0			*		D10 for granular soil near Baghdad N60<35, in mm	32	$D_{10} = 0.001 \times N_{60}^{0.0858}$
Rocha Filho and Carvalho , 1989	5.1	~	~	~	~	CPT tip resistance (qc MPa), data from Brazil (average	e i 6 5Gnessio	rasidualasoiN60
Schnaid et al., 2004	~ 37.2 to 83	3.6		*		initial stiffness modulus (Go) for un-cemented soils, in	nM4₽a	$G_0 = 200\sqrt[3]{10000 \times N60 \times \sigma'_v} \leftrightarrow 450\sqrt[3]{10000 \times N60 \times \sigma'_v}$
Seed et al., 1986	17.3	~	~	~	~	initial shear modulus (Go), in MPa	48	$G_0 {=} 20000 \frac{\sqrt[3]{N_{1.60}} \times \sqrt{\sigma_w^* \times 0.01788}}{1000}$

.: List of SPT Correlations For Other Soil Parameters :.

.: List of SPT Correlations For California Bearing Ratio (CBR) :.

California Bearing Ratio (CBR)		Clay	Silt	Sand	Grvl	Comments	Ref#	Equation
Coosne, 1999	9	~	~	~	~	Piedmont residual soil	67	$CBR = 2.53 - 1.14 \times Log \left(DCPI_{(N6o)} \right)$
Ese et al., 1995	10			*		aggregate base course	67	$CBR = 2.44 - 1.07 \times Log \left(DCPI_{(N6o)} \right)$
Harison, 1987	10	*				granular and cohesive	67	$CBR = 2.55 - 1.14 \times Log \left(DCPI_{(N60)} \right)$
Kleyn, 1975	8	~	~	~	~		67	$CBR = 2.62 \cdot 1.27 \times Log \left(DCPI_{(N6o)} \right)$
Livneh et al., 1992	8	*				granular and cohesive	67	$CBR=2.45-1.12 \times Log(DCPI_{(N6o)})$
Livneh, 1987	10	*				granular and cohesive	67	$CBR = 2.56 - 1.16 \times Log \left(DCPI_{(N6o)} \right)$
NCDOT, 1998	14	*				aggregate base course and cohesive	67	$CBR = 2.6 - 1.07 \times Log \left(DCPI_{(N60)} \right)$
Webster et al., 1992	9	*				various soil types	67	$CBR=2.46-1.12 \times Log\left(DCPI_{(N60)}\right)$